0=300-16t^2

Simple and best practice solution for 0=300-16t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=300-16t^2 equation:



0=300-16t^2
We move all terms to the left:
0-(300-16t^2)=0
We add all the numbers together, and all the variables
-(300-16t^2)=0
We get rid of parentheses
16t^2-300=0
a = 16; b = 0; c = -300;
Δ = b2-4ac
Δ = 02-4·16·(-300)
Δ = 19200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{19200}=\sqrt{6400*3}=\sqrt{6400}*\sqrt{3}=80\sqrt{3}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{3}}{2*16}=\frac{0-80\sqrt{3}}{32} =-\frac{80\sqrt{3}}{32} =-\frac{5\sqrt{3}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{3}}{2*16}=\frac{0+80\sqrt{3}}{32} =\frac{80\sqrt{3}}{32} =\frac{5\sqrt{3}}{2} $

See similar equations:

| -7x-3(2x+8=54 | | 7t+3=8+7 | | 8b+8-4b-3=4b+5 | | 2(u+5)-6u=-22 | | 21x+185=-222+10x | | 2(4m+3)=7m+5 | | 8-28=m-8+12 | | -9-x/4=-5 | | 2(-5-4x)=22 | | 15(-10x-8)=1080 | | 4(2x+5)=3(5×-2) | | 6x-8x=3.6 | | 5x-1-14x2=180 | | -57-18=15a | | 6-1.4x=x+2.6 | | 3.5x-20=2.4x13 | | 4(y+3)=2(5+2y) | | 3(2x-1)+5=2(x-1) | | 4(2x+5)=3(5×-2 | | -9w+-72=5w-32 | | 5n+20/3=n-8 | | 8(-7x+15)=1128 | | 3-11b=9+5b | | 8-(4z-3)=9-5z | | 3w+7=-29 | | 89+w=90 | | -2x-159=198-9x | | 3t^2-16t+18=0 | | 9x=4x-64 | | 16=-4(2x+6) | | -12=9x+15 | | 9n-7=-6 |

Equations solver categories